$Na_{2+x}Nb_6P_4O_{26}$: A Novel Niobium Phosphate Bronze Isotypic of the m = 3 Member of the MPTB_p Family

A. BENABBAS, M. M. BOREL, A. GRANDIN, A. LECLAIRE,* and B. RAVEAU

Laboratoire de Cristallographie et Sciences des matériaux, CRISMAT-ISMRa Université de Caen, Boulevard du Maréchal Juin, 14050 Caen Cedex, France

Received April 29, 1991

A new niobium phosphate bronze $Na_{2+x}Nb_6P_4O_{26}$ ($0 \le x \le 0.75$) has been isolated. Its structure was solved by single crystal X-ray diffraction. It crystallizes in the orthorhombic system with space group $P2_{12_12}$. The cell parameters are a = 19.8050(10), b = 14.3859(7), and c = 5.3960(4) Å. The framework is built up from ReO₃-type slabs of NbO₆ octahedra, perpendicular to **a** and linked by isolated PO₄ tetrahedra delimiting pentagonal tunnels running along **c**. The structure of this bronze corresponds to that expected for the hypothetical member m = 3 of the series of the monophosphate tungsten bronzes (MPTB_p) with pentagonal tunnels (WO₃)_{2m}(PO₂)₄. Relationships with other niobium phosphate bronzes are also discussed. @ 1991 Academic Press, Inc.

Introduction

The recent investigation of the systems A-Nb-P-O where A = Na, K has allowed several niobium phosphate bronzes to be synthesized. The difference in size between potassium and sodium ions has given rise to a great disparity between the structures of the phases isolated in the two systems. In part, the phases obtained in the K-Nb-P-O system present great similarities with the tungsten bronzes, as shown for instance for KNb₃P₃O₁₅(1) related to the tetragonal tungsten bronze (TTB) (2), for K₃Nb₆P₄O₂₆ (3) related to the hexagonal tungsten bronze (HTB) (4), and for K₇Nb₁₄P₉O₆₀ (5), α -

 $K_{5-r}Nb_{8}P_{5}O_{34}(6)$, and β - $K_{4}Nb_{8}P_{5}O_{34}(7)$ related to the intergrowth tungsten bronzes (ITB) (8). On the other hand, the study of the Na-Nb-P-O system has allowed the oxide Na₄Nb₈P₅O₃₅ (9), whose structure exhibits similarities with the m = 3 member of the diphosphate tungsten bronzes with pentagonal tunnels (10), to be isolated. The existence of different series of phosphate tungsten bronzes related to the ReO₃-type structure (11) should allow a similar behavior to be expected for niobium phosphate bronzes. The synthesis of the bronzoid β -NbPO₅ (12), isotypic of WPO₅ (13), the second member of the monophosphate tungsten bronzes (MPTP_p) with pentagonal tunnels $(WO_3)_{2m}(PO_2)_4$, is in agreement with this view. However, in the other members of this series, the valency of tungsten is always greater than five, which makes impossible

0022-4596/91 \$3.00 Copyright © 1991 by Academic Press, Inc. All rights of reproduction in any form reserved.

^{*} To whom correspondence should be addressed at CRISMAT-ISMRa, Boulevard du Maréchal Juin, 14050 Caen Cedex, France.

the synthesis of isotypic niobium phosphates. Nevertheless, the size of the empty tunnels in the MPTB_p's is adequate for sodium so that it should be possible to compensate the excess charge with respect to niobium by introducing sodium ions in the tunnels in order to synthesize other members of the niobium phosphate bronze series with composition $Na_x(NbO_3)_{2m}(PO_2)_4$. We report here on the crystal structure of a new niobium phosphate bronze $Na_{2+x}Nb_6P_4O_{26}$, third member of the series of monophosphate bronzes.

Synthesis and Characterization

The limiting compound, with x = 0, i.e., the bronzoid $Na_2Nb_6^VP_4O_{26}$, was prepared in air in two steps. First, the appropriate mixture of Na₂CO₃, Nb₂O₅, and H(NH₄)₂PO₄ was ground in an agate mortar and heated up to 673 K in order to remove CO_2 , H_2O_2 , and NH₃. Then, the mixture was reground and heated in a platinum crucible at 1273 K in air for 1 day. The X-ray powder diffraction pattern of this phase was indexed in an orthorhombic cell in agreement with the parameters obtained from the single crystal study (Table I).

For higher sodium contents, corresponding to the composition $Na_{2+x}Nb_6P_4O_{26}$ with 0 < x < 0.75, a similar experimental method was used; the appropriate mixtures were heated in air at 673 K in order to decompose Na_2CO_3 and $H(NH_4)_2PO_4$. The necessary amount of niobium was added to that mixture and heated at 1273 K in an evacuated silica ampoule. This method allowed for blue crystals to be grown. The approximate composition of these crystals was determined by microprobe analysis and the structure refinement of the selected crystal converged to the composition Na_{2.66}Nb₆P₄O₂₆.

Structure Determination

A dark blue crystal with dimensions 0.077 \times 0.059 \times 0.045 mm was selected for the

h	k	l	$d_{\rm obs}$	$d_{ m calc}$	Ι
0	2	0	7.190	7.193	17
3	2	0	4.860	4.864	39
3	0	1	4.168	4.178	48
3	1	1	4.004	4.012	100
3	3	0	3.880	3.880	56
0	4	0	3.601	3.597	50
4	3	0	3.445	3.445	8
3	3	1	3.151	3.150	52
6	2	0	2.999	3.000	2
6	1	1	2.761	2.763	22
2	5	0		2.763	
6	3	0	2.718	2.719	26
0	0	2	2.688	2.698	35
0	5	1	2.538	2.539	30
6	3	1	2.427	2.428	9
9	1	0	2.174	2.175	4
9	3	0	1.999	2.000	8
6	6	0	1.939	1.940	8
6	3	2	1.913	1.915	21

7

4

7

1

2

8

1

0

1

1

1

0

1

9

3

10

10

0

13

4

9

1.912

1.877

1.844

1.844

1.800

1.798

TABLE I Na2Nb6P4O26: INTERETICULAR DISTANCES

structure determination. The cell parameters reported in Table II were determined by diffractometric techniques at 294 K and refined by the least squares method based upon 25 reflections with $18 \le \theta \le 25^\circ$.

1.880

1.843

1.800

The data were collected on a CAD-4 Enraf-Nonius diffractometer with the data collection parameters reported in Table II. The reflections were corrected for Lorentz and polarization effects. No absorption corrections were performed.

The intensity of reflections indicated mmm as Laue symmetry. The systematic absences h + l = 2n + 1 for h0l are consistent with the space groups $Pmn2_1$ and Pmnm(another setting of *Pmmn*). The first group was finally chosen according to the Patterson peaks. The niobium atoms were located from the Patterson series. Then, the phosphorus, sodium, and oxygen atom co-

TABLE II

Summary of Crystal Data, Intensity Measurements, and Structure Refinement Parameters for $Na_{2.66}Nb_4P_4O_{26}$

1. Cry	ystal data
Space group	P2 ₁ 2 ₁ 2
Cell dimensions	a = 19.805(1) Å
	b = 14.3859(7) Å
	c = 5.3960(4) Å
Volume	1537.4(3) Å ³
Ζ	3
2. Intensity	measurements
λ(MoK α)	0.71073 Å
Scan mode	$\omega - \theta$
Scan width (°)	$1 + 0.35 \tan \theta$
Slit aperture (mm)	$1 + \tan \theta$
Max $\theta(^{\circ})$	45
Standard reflections	3 measured every 3000 sec (no decay)
Reflections with $I > 3\sigma$	1341
3. Structure solu	tion and refinement

J. Subcluic son	
Parameters refined	140
Agreement factors	$R = 0.035, R_w = 0.034$

ordinates were obtained by successive difference synthesis calculations. The refinement of the positions of all the atoms led to R = 0.089; however, some of the coordinates did not converge. Furthermore, after an isotropic refinement, all the thermal factors became abnormal, either very large or negative.

Subsequently, since the structure was found to be described also in the space group $P2_12_12$ by permuting the cell constants to obtain those indicated in Table II, the isotropic refinement was performed in this group. The reliability factor R decreased to 0.045 and the thermal factor of all atoms became normal. Then, anisotropic refinement including only niobium atoms led to R = 0.035 and $R_w = 0.034$, leading to the formula Na_{2.66}Nb₆P₄O₂₆ in agreement with microprobe analysis.

The atomic parameters are reported in Table III.

Description of the Structure and Discussion

The $[Nb_6P_4O_{26}]_{\infty}$ framework is built up from slabs of corner sharing NbO₆ octahedra connected through isolated PO₄ tetrahedra and delimiting pentagonal tunnels parallel to **c** as shown from the projection of the structure along **c** (Fig. 1).

The structure can be described as built up from ReO_3 -type slabs parallel to the (010) plane, forming infinite zig-zag chains of corner sharing octahedra along **a** (Figs. 1 and 2). The ReO_3 -type slabs are three octahedra

TABLE III

Positional Paramters and Their Estimated Standard Deviations

		-		_
Atom	x	у	z	B (Å ²)
Nb(1)	0.000	0.000	0.2640(6)	0.77(2)
Nb(2)	0.33090(5)	- 0.02029(6)	0.2372(5)	0.71(1)
Nb(3)	0.11669(5)	0.10021(6)	0.7647(4)	0.62(1)
Nb(4)	0.43601(4)	0.09682(6)	0.7459(5)	0.49(1)
Nb(5)	0.77765(6)	0.11139(6)	0.7414(4)	0.65(1)
P(1)	0.2158(1)	0.1654(2)	0.264(1)	0.41(4) ^a
P(2)	0.5369(1)	0.1787(2)	0.253(1)	0.36(4) ^a
P(3)	0.8842(1)	0.1708(2)	0.2332(9)	0.35(4) ^a
Na(1)	0.0587(3)	0.2161(4)	0.242(3)	1.18(9) ^a
Na(2)	0.3779(4)	0.2060(5)	0.246(4)	1.4(1) ^a
O(1)	0.0642(6)	0.0530(8)	0.023(3)	1.2(2) ^a
O(2)	-0.0453(4)	0.1262(6)	0.271(3)	0.9(1) ^a
O(3)	0.0598(5)	0.0459(7)	0.517(2)	$0.8(2)^{a}$
O(4)	0.2595(4)	0.0781(5)	0.273(3)	0.7(1) ^a
O(5)	0.3915(6)	0.0540(7)	0.474(2)	0.9(2) ^a
O(6)	0.2765(6)	-0.0931(6)	0.026(2)	$0.7(1)^a$
0(7)	0.4030(5)	-0.1126(6)	0.214(2)	$1.1(2)^{a}$
O(8)	0.3714(5)	0.0546(7)	-0.022(2)	0.9(2) ^a
O(9)	0.2940(5)	-0.0832(7)	0.536(2)	$0.7(1)^{a}$
O(10)	0.0626(4)	0.2218(5)	0.765(3)	$0.7(1)^{a}$
0(11)	0.1737(5)	0.1721(7)	0.493(2)	1.0(2) ^a
O(12)	0.1686(6)	0.1680(7)	0.036(2)	1.1(2) ^a
0(13)	0.1849(4)	0.0094(5)	0.757(4)	0.7(1) ^a
O(14)	0.3910(5)	0.2242(6)	0.712(2)	0.7(1) ^a
O(15)	0.500	0.000	0.780(4)	1.0(2) ^a
O(16)	0.4855(5)	0.1653(7)	0.054(2)	$0.7(2)^a$
0(17)	0.5085(5)	0.1655(7)	0.514(2)	1.0(2) ^a
O(18)	0.7627(4)	0.2516(5)	0.725(2)	0.5(1) ^a
O(19)	0.8577(5)	0.1543(6)	-0.024(2)	0.6(1) ^a
O(20)	0.8400(5)	0.1315(7)	0.441(2)	0.8(2) ^a

^a Isotropically refined. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as

$$B = \frac{4}{3} \sum_{i} \sum_{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j} \cdot \boldsymbol{\beta}_{ij}.$$

FIG. 1. Projection of the Na_{2.66}Nb₆P₄O₂₆ structure along c.

wide along the direction [110] and formed of strings of two octahedra alternating with one octahedron along the perpendicular direction [230]. Consequently, this oxide represents the m = 3 member of the large family of the monophosphate tungsten bronzes with pentagonal tunnels $(WO_3)_{2m}(PO_2)_4$ which was previously studied (10). However, it is worth pointing out that in the case of tungsten bronzes the m = 3 member was never observed. The phase $W_{12}P_8O_{52}$ which corresponds to this composition exhibits a

FIG. 2. ReO_3 -type slabs parallel to the (010) plane.

NIOBIUM PHOSPHATE BRONZE

				5		
Nb(1)	O(1)	O(1 ⁱ)	O(2)	O(2 ⁱ)	O(3)	O(3 ⁱ)
O(1)	1.97(1)	2.96(2)	2.76(2)	2.93(2)	2.66(2)	3.89(2)
O(1 ⁱ)	97.6(6)	1.97(1)	2.93(2)	2.76(2)	3.89(2)	2.66(2)
O(2)	87.2(5)	94.2(5)	2.025(8)	4.05(2)	2.72(1)	2.82(2)
O(2 ⁱ)	94.2(5)	87.2(5)	177.9(7)	2.025(8)	2.82(1)	2.72(2)
O(3)	86.4(5)	175.8(5)	87.3(5)	91.25(3)	1.92(1)	2.71(1)
O(3 ⁱ)	175.8(5)	86.4(5)	91.3(5)	87.3(5)	89.7(5)	1.92(1)
Nb(2)	O(4)	O(5)	O(6)	O(7)	O(8)	O(9)
O(4)	2.009(8)	2.85(1)	2.82(1)	3.96(2)	2,75(2)	2.81(1)
O(5)	89.2(4)	2.05(1)	3.94(2)	2.79(1)	2.71(1)	2.78(1)
O(6)	92.7(4)	177.6(4)	1.89(1)	2.72(1)	2.85(1)	2.78(2)
O (7)	177.3(5)	88.1(4)	90.0(4)	1.955(9)	2.79(1)	2.81(1)
O(8)	88.2(5)	85.4(5)	96.2(5)	91.6(4)	1.94(1)	3.92(2)
O(9)	89.2(5)	86.9(5)	91.6(4)	90.7(4)	171.9(5)	1.99(1)
Nb(3)	O(1 ⁱⁱ)	O(3)	O(10)	O(11)	O(12 ⁱⁱ)	O(13)
O(1 ⁱⁱ)	1.87(1)	2.74(2)	2.80(2)	3.98(2)	2.65(2)	2.86(2)
O(3)	92.7(5)	1.92(1)	2.87(1)	2.90(1)	3.95(2)	2.85(2)
O(10)	91.1(5)	92.4(5)	2.051(8)	2.74(2)	2.67(2)	3.90(2)
O(11)	172.1(5)	91.7(5)	82.1(5)	2.12(1)	2.94(2)	2.75(2)
$O(12^{u})$	85.3(5)	173.6(4)	81.6(5)	89.8(5)	2.04(1)	2.75(2)
O(13)	99.5(6)	97.1(6)	165.5(3)	86.6(5)	89.2(6)	1.879(8)
Nb(4)	O(5)	O(8 ⁱⁱ)	O(14)	O(15)	O(16 ⁱⁱ)	O(17)
O(5)	1.82(1)	2.75(2)	2.76(1)	2.82(2)	3.98(2)	2.83(2)
O(8 ⁱⁱ)	95.5(5)	1.89(1)	2.86(1)	2.87(1)	2.80(1)	4.02(1)
O(14)	91.2(4)	93.0(4)	2.045(8)	3.90(1)	2.76(1)	2.70(1)
O(15)	98.8(6)	98.8(5)	163.7(3)	1.892(2)	2.82(1)	2.78(2)
O(16")	172.7(4)	86.8(5)	81.9(4)	87.6(5)	2.17(1)	2.95(2)
O(17)	90.6(5)	170.8(4)	80.1(4)	86.9(5)	86.3(4)	2.15(1)
Nb(5)	O(6ⁱⁱⁱ)	O(9 ^{iv})	O(13 ^{iv})	O(18)	O(19 ⁱⁱ)	O(20)
O(6 ⁱⁱⁱ)	1.89(1)	2.67(2)	2.75(2)	2.91(1)	2.81(1)	3.95(2)
O(9 ^{iv})	91.2(5)	1.84(1)	2.80(1)	2.86(1)	3.96(1)	2.79(1)
O(13 ^{IV})	93.4(6)	97.2(5)	1.891(8)	3.90(2)	2.77(1)	2.69(2)
U(18)	95.2(4)	94.6(4)	165.2(3)	2.040(7)	2.71(1)	2.77(1)
U(19 ⁴)	88.8(5)	175.7(4)	87.0(5)	81.2(4)	2.12(1)	2.93(2)
O(20)	177.7(5)	91.1(5)	85.9(6)	85.0(4)	89.0(4)	2.06(1)

TABLE IV

Distances (Å) angles (°) in the NbO₆ Octahedra⁴

BENABBAS ET AL.

TABLE IV—Continued

Distances (Å) and angles (°) in the PO ₄ tetrahedra ^b						
P (1)	O(4)	O(11)	O(12)	O(18 ^v)		
O(4)	1.526(8)	2.48(1)	2.56(2)	2.45(1)		
O(11)	110.3(7)	1.49(1)	2.47(2)	2.39(1)		
O(12)	112.7(7)	108.5(6)	1.55(1)	2.55(1)		
O(18 ^v)	107.5(4)	105.1(6)	112.5(6)	1.514(8)		
P(2)	O(7 ^{iv})	O(10 ^{vi})	O(16)	O(17)		
O(7 ^{iv})	1.54(1)	2.48(1)	2.49(1)	2.50(2)		
O(10 ^{vi})	108.2(5)	1.522(9)	2.43(1)	2.46(2)		
O(16)	110.4(7)	107.7(7)	1.49(1)	2.53(2)		
O(17)	109.5(7)	107.4(8)	113.4(6)	1.53(1)		
P(3)	O(2 ^{vii})	O(14 ^{vi})	O(19)	O(20)		
O(2 ^{vii})	1.550(9)	2.50(1)	2.53(2)	2.45(1)		
O(14 ^{vi})	107.5(5)	1.546(8)	2.51(1)	2.45(1)		
O(19)	111.7(7)	111.2(6)	1.50(1)	2.55(2)		
O(20)	105.5(7)	105.8(6)	114.7(6)	1.53(1)		

Note. Symmetry code: i: -x, -y, -z; ii: x, y, z + 1; iii: 1 - x, -y, 1 + z; iv: 1 - x, -y, z; v: x - 1/2, 1/2 - y, -z + 1; vi: 1/2 + x, 1/2 - y, -z + 1; vii: x + 1, y, z; viii: x, y, z - 1; ix: x - 1/2, 1/2 - y, -z. ^a The diagonal terms are Nb-O(*i*) distances, the terms above the diagonal are O(*i*)-O(*j*) distances, and those below are the O(*i*)-Nb-O(*j*) angles.

^b The diagonal terms are the P-O(*i*) distances, the terms above the diagonal are the O(*i*)-O(*j*) distances, and those below are the O(*i*)-P-O(*j*) angles.

FIG. 3. Hexagonal windows: two of them contain Na(1) and Na(2), the third is empty.

different tunnel structure (14) related to $C_SW_8P_8O_{40}$ (15). This difference can be explained by the fact that for low *m* values, the ReO₃-type slabs are more distorted in order to accomodate the PO₄ tetrahedra, so that other arrangements can be more stable; this is especially true in the case of tungsten bronzes, where it is well known that the symmetry of the WO₆ octahedra increases as the W(V) content increases.

The significant distortion of the octahedral slabs is easily evidenced from the consideration of the cell parameters. The previous study of the MPTB_p's (11) allowed cell parameters to be calculated versus m, based on the parameter of the cubic cell of ReO₃ according to the equations

$$a \approx a_{\text{ReO}_3}\sqrt{2}, b \approx a_{\text{ReO}_3}\sqrt{3}, \text{ and}$$

 $c \approx 2\left(K + \frac{m}{2}a_{\text{ReO}_3}\cos 35.3^\circ\right).$

Moreover, two space groups, $P2_12_12_1$ and *Pnn2*, were foreseen for even and odd *m*, respectively. In the case of this niobium phosphate bronze one observes that the distortion of the ReO₃-type slabs gives rise to the degeneracy of the space groups, with a tripling of the *b* parameter with respect to the phosphate tungsten bronzes $(WO_3)_{2m}(PO)_4$ ($a_{Nb} \approx 3a_W \approx 3a_{ReO_3}\sqrt{3}$). Note that the additional reflections are as strong as the basic reflections, in agreement with the fact that some of the NbO₆ octahedra are strongly tilted with respect to the ideal ReO_3 -type structure.

Though they are distorted, the NbO₆ octahedra exhibit a more regular geometry (Table IV) than the other niobium phosphates. The Nb(1) and Nb(2) atoms exhibit four Nb–O distances smaller than 2 Å (1.92 to 1.97 Å) and two longer ones (2.025 Å) in agreement with the fact that they share their oxygen atoms with four NbO₆ octahedra and two tetrahedra, respectively. In the same way Nb(3), Nb(4), and Nb(5) octahedra are characterized by three short bondlengths, smaller than 2 Å, corresponding to Nb–O–Nb bonds, and three Nb–O distances longer than 2 Å, corresponding the Nb–O–P bonds (Table IV).

The PO_4 tetrahedra which share their four corners with NbO₆ octahedra are regular as generally observed for other niobium phosphates (Table IV).

The sodium atoms are not located on the axis of the pentagonal tunnels (Fig. 1) but at the boundary between two adjacent tunnels along **a**, nearly at the center of the hexagonal windows formed of three octahedra and three tetrahedra (Fig. 3). Only two sites out of three are occupied by sodium. The Na(1) and Na(2) atoms exhibit a 9- and 10-fold coordination, respectively, with Na–O distances ranging from 2.327 to 3.02 Å. In the ideal structure the coordination should be

identical for all the sodium atoms; the two sorts of coordination are just due to the distortion of the $[Nb_6P_4O_{26}]_{\infty}$ framework.

Concluding Remarks

This study shows the possibility of introducing sodium into the host lattice of the monophosphate tungsten bronze-type structure (MPTB_n), leading to the formula $Na_x(MO_3)_{2m}(PO_2)_4$. The third member of the series, represented by $Na_{2+x}Nb_6P_4O_{26}$, has been synthesized for the first time, opening the route to the synthesis of other niobium phosphate bronzes with the MPTB_p structure. The existence of mixed valency for niobium Nb(V)/Nb(IV) suggests the possibility of inducing electron transport properties by adjusting the sodium content in the cavities, in agreement with the metallic behavior of the phosphate tungsten bronzes $(WO_3)_{2m}(PO_2)_4$. The investigation of physical properties will be performed in connection with structural evolution and sodium nonstoichiometry.

References

1. A. LECLAIRE, M. M. BOREL, A. GRANDIN, AND B. RAVEAU, J. Solid State Chem. 80, 12 (1989).

- 2. A. MAGNELI, Arkiv. Kemi 1 213, 269 (1949).
- 3. A. BENABBAS, M. M. BOREL, A. GRANDIN, A. LECLAIRE, AND B. RAVEAU, J. Solid State Chem. 84, 365 (1989).
- 4. A. MAGNELI, Acta Chem. Scand. 7, 315 (1953).
- 5. A. LECLAIRE, A. BENABBAS, M. M. BOREL, A. GRANDIN, AND B. RAVEAU, J. Solid State Chem. 83, 245 (1989).
- A. BENABBAS, M. M. BOREL, A. GRANDIN, A. LECLAIRE, AND B. RAVEAU, J. Solid State Chem. 87, 360 (1990).
- 7. A. BENABBAS, M. M. BOREL, A. GRANDIN, J. CHARDON, A. LECLAIRE, AND B. RAVEAU, J. Solid State Chem. 91, 323 (1991).
- 8. A. HUSSAIN AND L. KIHLBORG, Acta Crystallogr. Sect A 32, 551 (1976).
- A. BENABBAS, M. M. BOREL, A. GRANDIN, A. LECLAIRE, AND B. RAVEAU, J. Solid State Chem. 89, 75 (1990).
- 10. M. HERVIEU, B. DOMENGES, AND B. RAVEAU, J. Solid State Chem. 58, 223 (1985).
- 11. M. M. BOREL, M. GOREAUD, A. GRANDIN, PH. LABBE, A. LECLAIRE, AND B. RAVEAU, Eur. J. Solid State Inorg. Chem. 28, 93 (1991).
- 12. H. CHAHBOUN, D. GROULT, M. HERVIEU, AND B. RAVEAU, J. Solid State Chem. 65, 331 (1986).
- N. KINOMURA, M. HIROSE, N. KUMADA, F. MUTO, AND T. ASHIDA, J. Solid State Chem. 77, 156 (1988).
- 14. B. DOMENGES, M. GOREAUD, PH. LABBE, AND B. RAVEAU, Acta Crystallogr. Sect. B 38, 1724 (1982).
- 15. M. GOREAUD, PH. LABBE, AND B. RAVEAU, J. Solid State Chem. 56, 41 (1985).